四路开关量采集使用说明

(QX-DI04 / QX-DI08)

一、产品特点:

- ▶ 支持干节点、湿节点、PNP、NPN 型接入
- ▶ 支持触发计数、计时,触发消抖
- ▶ 支持高、低触发方式
- ▶ 支持主动模式,跳变后主动发送自定义数据
- > 采用双极性光耦隔离
- ▶ 9^{24V} 宽电压供电,反接保护
- ➤ RS485 通讯接口, TVS 静电浪涌保护
- 地址、波特率可修改
- ➤ 标准 modbus-RTU 协议
- ▶ 32 位高性能 ARM 处理器,带独立硬件看门狗
- ➤ 工业级宽温-40~80°C

二、 电气参数:

产品型号	QX-DI04 / QX-DI08
供电电压	DC 9~24V
功耗	≤0.2W
信号类型	干节点、湿节点、NPN、PNP
逻辑高电平	7~30V
逻辑低电平	0~5V
最大采集频率	100Hz
输入阻抗	5. 1Κ Ω
输入隔离电压	3KV
通讯接口	RS485(可选隔离)
通讯格式	1200~115200, 8, N, 1
通讯协议	Modbus-RTU 从机
工作温度	-40 [~] 80°C
工作湿度	10 [~] 90%RH 无凝结
安装方式	导轨或 2*M3 螺丝
尺寸	54*100*32mm
重量	63g/65g

三、 Modbus 寄存器地址表

注: 所有 0x 开头数值均表示十六进制数值

保持寄存器 (相关功能码 0x03 0x06 0x10)							
寄存器含义	地址	默认值	值范围	单位	权限		
QX-DI04 (四路款)							
通道 1~4 状态	$0x00^{\sim}0x03$	_	0:未触发	-	只读		
			0xFF00:触发				
通道 1~4 计数	$0x04^{\sim}0x07$	0	0~65535	次	读写		
通道 1~4 计时	0x08~0x0B	0	0~65535	秒	读写		
通道 1~4 触发方	$0x0C^{\sim}0x0F$	1	0:低电平	-	读写		
式			1:高电平				
QX-DI08(八路蒙	()						
通道 1~8 状态	$0x00^{\sim}0x07$	_	0:未触发	-	只读		
			0xFF00:触发				
通道 1~8 计数	$0x30^{\sim}0x37$	0	0~65535	次	读写		
通道 1~8 计时	$0x40^{\sim}0x47$	0	$0^{\sim}65535$	秒	读写		
通道 1~8 触发方	$0x50^{\sim}0x57$	1	0:低电平	-	读写		
式			1:高电平				
共同							
所有通道总计数	0x10	0	0~65535	次	读写		
触发消抖延时	0x11	5	0~65535	10ms	读写		
主动模式	0x12	1	0:关闭	-	读写		
			1:开启				
设备通信地址	0x20	1	1~255	-	读写		
波特率	0x21	3	0~8	-	读写		
特殊命令寄存器	0xFF00		0x01: 重启	-	只写		
			0xFFFF: 恢复出厂设				
			置				

输入寄存器(相关功能码 0x04)					
寄存器含义	地址	默认值	值范围	单位	权限
通道 1~4 状态	$0x00^{\sim}0x03$	_	0:未触发	-	只读
(四路款)			0xFF00:触发		
通道 1~8 状态	$0x00^{\sim}0x07$	_	0:未触发	-	只读
(八路款)			0xFF00:触发		

	扩展寄存器(相关功能码 0x16, 0x17)					
非标功能码, 主要	尽用于自定义主	三动帧				
寄存器含义	地址	默认值	最大帧长度	单位	权限	
QX-DI04(四路蒙	()					
通道 1~4 触发后	0x00~0x03	空	64	-	读写	
主动发送一帧						
通道 1~4 恢复后	$0x04^{\sim}0x07$	空	64	_	读写	
主动发送一帧						
QX-DI08(八路蒙	QX-DI08 (八路款)					
通道 1~8 触发后	0x00~0x07	空	32	-	读写	
主动发送一帧						
通道 1~8 恢复后	0x08~0x0F	空	32	-	读写	
主动发送一帧						

四、保持寄存器功能说明

1. 通道 1~4 状态(0x00~0x03): 通道 1~8 状态(0x00~0x07):

读取通道状态,0:未触发,0xFF00:已触发。

是否触发,与触发方式有关,见4。

2. 通道 1~4 计数 (0x04~0x07):

通道 1~8 计数 (0x30~0x37):

读取通道触发次数,写0清零。

最大65535次,超过后归0继续计数。

3. 通道 1~4 计时(0x08~0x0B):

通道 1~8 计时(0x48~0x47):

读取通道触发后到现在经过的时间,单位秒。写 0 清零。 未触发时,值恒为 0。

最大65535秒,超过后归0继续计时。

4. 通道 1~4 触发方式(0x09~0x0F):

通道 1~8 触发方式(0x50~0x57):

读取/设置触发方式

0低触发:输入低电平时,通道状态为触发。

1高触发:输入高电平时,通道状态为触发。

触发方式	输入低电平	输入高电平
0 低触发	触发	未触发
1 高触发	未触发	触发

注:

- 1. 高低电平,并非 DI 与电源地的电压差,是根据 DI 和 COM 之间的电压差决定。
- 指示红灯灭肯定为低电平,但红灯亮不一定是高电平,有可能此时的电流能点亮灯,但亮度不足以驱动光耦导通,应该以实际读到的状态为准。
- 3. 修改触发方式后, 需要重启生效。

5. 通道总计数(0x10):

所有通道触发次数总和。写任何值将清零所有通道计数,和 总计数。

最大65535次,超过后归0继续计数。

6. 触发消抖延时(0x11):

背景知识:通常用的开关为机械弹性开关,由于机械触点的弹性作用,开关在闭合或弹起时不会马上稳定地接通或断开,在弹片和触点临界时,会伴随一连串的抖动,导致信号连续跳变。

设置/读取消抖延时时间,单位10ms。写入10则为100ms。 机制:检测到触发信号,开始计时,期间一直有触发信号, 计时结束后才判定为触发。简单理解为信号必须稳定持续多 久才有效。

当采集信号的频率较快(>20Hz)时,建议设置此时间为 0。 作用: a. 滤除短暂干扰信号。b. 避免开关跳变时信号抖动。

7. 主动模式(0x12):

设置主动模式开启关闭。1:开启,0:关闭。 信号跳变时,主动从通讯口发送一帧数据。 从开到关,或关到开,均可各自定义一帧数据。

8. 设备地址(0x20):

修改/查看本机通信地址。在不知道通信地址的情况下,可以使用 0 (广播地址) 进行读写以及控制。不可连接多台设备使用

广播地址。

9. 波特率(0x21):

修改/查看通信波特率。

值	波特率 bps
0	1200
1	2400
2	4800
3(默认)	9600
4	19200
5	38400
6	57600
7	76800
8	115200

10. 通讯格式(0x23):

修改/查看通信格式。

寄存器值	数据位	校验	停止位
0(默认)		N无	
1		0 奇	1
2	8	E 偶	
3		N无	
4		0 奇	2
5		E 偶	

注:此项设置,上位机软件[自动交互]内没有集成,需要到[手动测试]使用06功能码手动发送。举例如下:

上述指令表示, 1号设备的 0x23 号寄存器的值修改为 2, 即 1号模块的通讯格式改为 8E1。

11. 特殊命令寄存器(0xFF00):

写不同值执行不同命令。

0x01: 重启设备。

OxFFFF:恢复出厂设置。所有配置参数将恢复成默认值。

六、离散输入说明:

1. 通道 1~4 状态(0x00~0x03):

返回状态以位(bit)表示。

[4 通道款]举例:返回数据为 0x05,二进制为 0000 0101,因为只有 4 个通道. 只取低 4 位 0101。

值	0	1	0	1
通道	D14	D13	D12	DI1
状态	未触发	触发	未触发	触发

[8 通道款]举例: 返回数据为 0x35, 二进制为 0011 0101

值	0	0	1	1	0	1	0	1
通道	D18	DI7	D16	D15	DI4	DI3	DI2	DI1
状态	未触发	触发	未触发	触发	未触发	触发	未触发	触发

七、输入寄存器说明:

1. 通道 1~4 状态(0x00~0x03):

通道 1~8 状态(0x00~0x07):

同保持寄存器的 0x00~0x03 / 0x00~0x07。

八、扩展寄存器说明及协议:

1. 通道 1~4 触发主动帧(0x00~0x03):

通道 1~8 触发主动帧(0x00~0x07):

当通道状态由未触发跳变到触发时,主动从通信口发出的一帧数据。

2. 通道 1~4 未触发主动帧(0x04~0x07):

通道 1~8 未触发主动帧(0x08~0x0F):

当通道状态由触发跳变到未触发时,主动从通信口发出的一帧数据。

3. 协议格式解析:

a. 设置主动帧:

发送(16 进制): ID 17 00 MM 00 01 NN AA BB CC DD··· xx yy 返回(16 进制): ID 17 00 MM 00 01 NN xx yy 当需要删除主动帧时,将协议中 NN=0,并删掉 AA BB CC DD··· 注:发送主动帧后,若对方会响应,则请确保对方响应数据的第一个字节不是 0,并且与本机地址不同。因为本机是 modbus 从机,收到第一个字节是广播地址 0 或本机地址后,可能会响应,做出不确定的操作。

b. 读取主动帧:

发送(16 进制): ID 16 00 MM 00 01 xx yy

返回(16 进制): ID 16 00 01 NN AA BB CC DD··· xx yy

协议中的标识含义

ID	设备地址
MM	通道寄存器地址
NN	主动帧的长度
AA BB CC DD···	主动帧
xx yy	CRC 校验

例 1:设置地址 1 的设备的通道 4 触发后主动发送 4 个数据 11 22 33 44

发送(16 进制): 01 17 00 03 00 01 04 11 22 33 44 B3 A6

返回(16 进制): 01 17 00 03 00 01 04 08 F0

例 2: 读取地址 1 的设备的通道 4 触发后主动发送的数据

发送(16 进制): 01 16 00 03 00 01 79 09

返回(16 进制): 01 16 00 01 04 11 22 33 44 C7 A2

例 3:设置地址 1 的设备的通道 4 未触发后主动发送 4 个数据 11 22 33 44

发送(16 进制): 01 17 00 07 00 01 04 11 22 33 44 B2 55

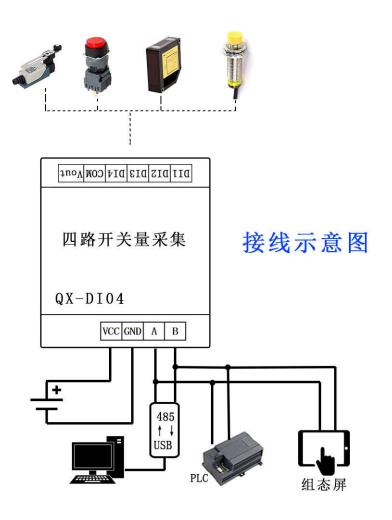
返回(16 进制): 01 17 00 07 00 01 04 09 C0

九、通信协议:

标准 modbus-RTU 协议,在常用功能码的基础上,拓展两个保留功能码,用于设置更复杂的参数。大部分参数均可通过保持寄存器实现,降低了操作难度。

支持的功能码

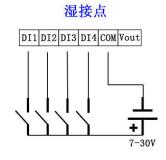
0x02	读离散输入状态
0x03	读多个保持寄存器
0x04	读多个输入寄存器
0x06	写单个保持寄存器
0x10	写多个保持寄存器
0x16(拓展)	读单个扩展寄存器
0x17(拓展)	写单个扩展寄存器

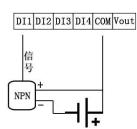

modbus-RTU 协议说明书和配套上位机软件 modbusRTU 工具链接: http://47.108.161.79/doc/tools/

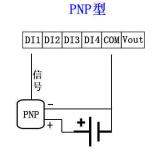
注: 0x16、0x17 功能码协议说明见八、3

十、端子定义:

VCC	直流电源正
GND	直流电源负
A	RS485 通信 A+端
В	RS485 通信 B-端
四路款 QX-DI04	
DI1~DI4	通道 1~4 信号输入
COM	信号公共端
Vout	电源输出,内部与 VCC 连通
八路款 QX-DI08	
D1~D8	通道 1~8 信号输入
CM	信号公共端

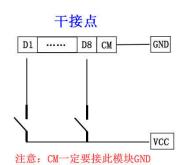

十一、 接线示意图:

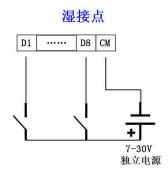


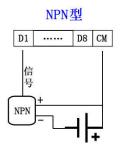

不同类型开关量 接线示意图

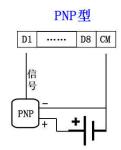
适用4通道 (QX-D104)

干接点
DI1 DI2 DI3 DI4 COM Vout
OND
注意: COM一定要接此模块GND

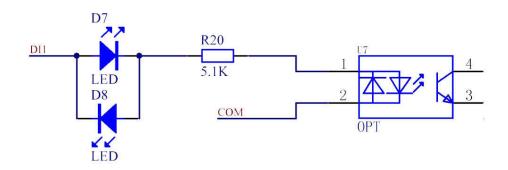






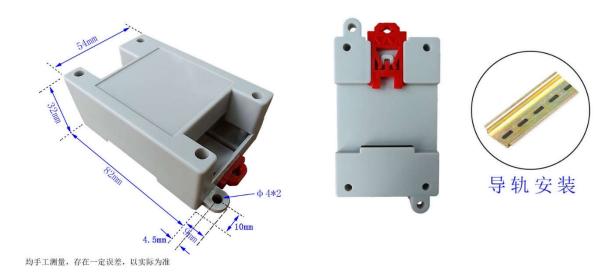

不同类型开关量 接线示意图

适用8通道 (QX-D108)



采集电路

通过双向光耦实现隔离, DI和COM不分正负, 只要有足够的电流通过即可。



十二、 实物及尺寸图:

尺寸图

十三、 注意事项:

- 1、 模块不可承受过度撞击、压力。
- 2、 请勿擅自改动产品的软硬件, 否则将导致保修失效。
- 3、 1年内出现故障,属我方责任包换。其它酌情收费。
- 4、 有偿保修范围:
 - 1) 输入电源过高以致电源被烧坏。
 - 2) 电源错接到 485 接口以致 485 部分被烧坏。
 - 3) 工作条件过于恶劣,如过于潮湿、灰尘过大、电源输入跳变过大。
 - 4) 继电器输出使用超过电压或电流指标范围
 - 5) 模块遭受雷击、高电压、大电流的冲击。
 - 6) 人为造成的外壳、开关、电路板等损坏。
- 5、 有偿保修时来往的运输费用由用户承担。
- 6、 任何产品均有故障的可能,使用本产品时,必须在具备安全保护的环境下运行,以应对产品故障时出现的状况,包括但不限于通信失败、输出异常、采集数据偏差大等。
- 7、 若违反上述规定, 导致人身危害或财产损失, 本司不承担 任何法律责任或经济赔偿责任。

文档版本	修订日期	修订说明
1. 0	22-11-15	初版
V1. 1	23-6-28	
V1. 2	23-9-8	优化说明
V1. 3	24-10-31	增加同系型号 QX-D108, 调整相应说明

淘宝店铺

四川旗芯电子科技有限公司

电话: 13881955334

地址:成都市郫都区德源镇大禹东路 66 号硅谷楼